Bass Lakes Management Plan

Presentation by Pat Conrad, Emmons & Olivier Resources, Inc. on behalf of

Brown's Creek Watershed District Board of Managers

waterlecologylcommunity

Introductions

Pat Conrad – EOR

Karen Kill – BCWD Administrator

WCD Staff

Lake Management Plan Components

1- Conduct lake condition assessment

2 - Identify issues and establish reasonable goals for future conditions

3 - Developimplementationplan to meet goals

Lake Condition Assessment

Lake and Watershed Data Collection

- Aquatic macrophyte survey Watershed conditions assessment
- Shoreline assessment** Flood assessment Lake resident input

Watershed & In-Lake Computer Modeling

Determine pollutant loadings Define flood vulnerabilities

Lake Management Plan Development

Issues Identification and Goal Setting (today!)

Issues, concerns, limitations

Future conditions

Plan Implementation

Riparian zone restorations

Stormwater runoff management

Flood resiliency strategies

Others?

Watershed Effect on Lake Dynamics

The natural characteristics of a watershed coupled with the land use in a watershed define the amount and quality of water reaching downstream resources

Size and Shape

Topography

Soils

Vegetative Cover

Land Uses

Bass Lake Land Cover

Deciduous Trees Grasslands and Shrubs Coniferous Trees Rural Residential Wetlands Limited Row Crop Agriculture Minimal Impervious surfaces

Watershed Pollutant Loading

Bass Lake Watershed Pollutant Loading Assessment

Pollutant "Hot-spots"

High contributing areas

Total Phosphorus & Sediment

Erosion prone, steep, bare soils

Potential restoration areas

Limnology – Lake Science

Physical

Size & Shape

Water temperature

Biological

Food chain: algae, macrophytes, fish Water Quality

Nutrients (phosphorus, nitrogen)

Transparency

waterontheweb.org

Dissolved oxygen

TYPICAL FOOD CHAIN PISCIVOROUS FISH PLANKTIVOROUS FISH FΔT ZOOPLANKTON USE NUTRIENTS NUTRIENTS RECYCLE Food web for Lake Mead, NV, source: waterontheweb.org

Balanced food chain has smaller numbers of larger species at each level

Each level preys upon the level(s) below

Disruptions to chain can cause unintended consequences – 'balance'

Two Stable Lake States

Two Stable Lake States

CLEAR-AQUATIC PLANT DOMINATED STATE

Balanced fish community and abundant aquatic plants keep water clear.

TURBID-ALGAE DOMINATED STATE

Too many pan fish and/or too few aquatic plants keep water turbid.

Phytoplankton - Algae

Need phosphorus and nitrogen to grow

Phosphorus is typically 'limiting' nutrient

Provide food for zooplankton, which in turn are food for fish

Too much algae ('algae blooms') cause water quality

impairment

Decaying algae consume oxygen – impact fisheries

BUNDANCE

JAN FED MAR AND MAY HIM ALL ALLO SEP OCT NOV DEC

Nursery area for fish

Zooplankton refuge

Wave break – reduce shoreline erosion

Can utilize phosphorus and decrease

algae levels

Can be a nuisance: milfoil, curlyleaf

pondweed

Macrophyte Survey - 2019

Aquatic plants were observed at over 95% of sampling points at both lakes

At depths of up to 17 feet at Bass Lake West and 10 feet at Bass Lake East = 100% Littoral

No submerged aquatic invasive plants

Purple loosestrife was observed along the shores of both lakes at low abundances.

Canada waterweed 68.1% of sampling points

Fern-leaf pondweed 53.6% of sampling points

Coontail 43.5% of sampling points

3.1 species per site

Floristic Quality Index (FQI) = 22.5 ecoregion median - 22.5

Fern-leaf pondweed 100% of sampling points

White-water-lily 30.2% of sampling points

2.5 species per site

Floristic Quality Index (FQI) = 21.9 ecoregion median - 22.5

Water Quality

Trophic State

Transparency

Phosphorus

Chlorophyll A

Trophic Classification

Oligotrophic Lakes

< 12 µg/L TP

Mesotrophic Lakes

Eutrophic Lakes

Carlson Trophic State Index Bass Lake West

Bass Lake West: Secchi Transparency & TP

e c o l o g y community

Bass Lake West

Carlson Trophic State Index Bass Lake East

	Clear <u>Oligotrophic</u>		Moderately Clear <u>Mesotrophic</u>					Green <u>Eutrophic</u>		Very Green <u>Hypereutrophic</u>		
Tropic State Index (TSI)						•						
	0	10	20	30	40	50	60	70	80	90	100	
Transparency						•						
	0	10	20	30	40	50	60	, 70	80	, 90	100	
Chlorophyll- a	N/A											
Total Phosphorus	_											
	0	10	20	30	40	50	60	20	80	90	100	

Bass Lake East: Secchi Transparency & TP

2017 2018

2020

2021

2019

0.070

0.060

0.050

0.040

0.030

0.020

0.010

0.000

2010

2011

2012

2013

2014

2015

2016

(mg/L)

Phot

otal

Conclusions

Overall good water quality and biological communities

Stability of existing water quality is dependent upon:

Maintaining macrophyte population Maintaining low disturbance of sediment

- Minimize motor boat disruption
- Keep rough fish out

Reducing watershed phosphorus loading:

- Turf management
- Healthy lakeshore buffers

Flood Risks - Background

Studies & Observations

2010 FEMA Map and Insurance Study published (Based on 2004 analysis)

2014 NOAA revised statistical rainfall depths (Example:100-Year Storm went from 5.9 inches to 7.2 inches)

2019+ Observed high water levels throughout BCWD

2021 Revised BCWD rainfall model with current water levels to assess flood risks around Bass Lakes

Bass Lake West – Water Levels

Bass Lake East – Water Levels

Flood Risks – Background

What is the 100-Year Storm?

- 7.20" of Rainfall falls in 24-hours
- Storm that has a 1% chance of happening in any given year
- 1 in 4 chance of experiencing during a 30-year mortgage

Flood Risks - Background

NOAA Revised Rainfall

- •24-Hour Storm Depths
 - 1-Year = 2.44"
 - 5-Year = 3.49"
 - 10-Year = 4.17"
 - 25-Year = 5.23"
 - 50-Year = 6.17"
 - 100-Year = 7.20"
 - 200-Year = 8.35"
 - 500-Year = 10.00"
 - 1000-Year = 11.40"
- •10-Day Snowmelt (Landlocked Systems Bass Lakes)
 - 100-Year = 7.20" of rainfall on Frozen Ground

Flood Risks – Modeling

Findings

Buildings

• 2 at Risk

– Inundation & access issues

Roads/Driveways

• 1 at Risk

- Inundated Driveway

Wells

• 3 at Risk

Septic Systems

- 13 at Risk
 - Questionable location data

No Data on Parcels

- 41 Wells
- 23 Septic Systems

Flood Risks

<u>w a t e r</u> <u>e c o l o g y</u> community

Drinking Water Well

Inundation by surface water

- Pathogens & contaminants get into water
 - Short Term: Boil water
 - Long Term: Disinfect, pump & test

Septic System

Inundation by surface water

- System will backup
- Groundwater within 3 feet
- Groundwater contamination
- Lake contamination

FRUCI – Septic located in depression – not likely accurately located

GUTZMANN – No Well Data (Likely drilled prior to 1975) Questionable Septic location

HELMER – No Well or Septic Data

REINKE – Well in Flood Footprint

Current Lake Uses Issues/Concerns/Limitations to Uses

Hard surfaces (roads, houses) that do NOT allow water to soak in

Streams are impacted at levels as low as 10%

Algal Biomass

Bass Lake West Bathymetry

Computer Modeling

- •What is a rainfall model (Hydrologic and Hydraulic)?
 - Drainage size, slope, direction, soil, vegetation, evaporation, rainfall
- Storm sewer pipes, manholes, channels, ponds, lakes, and depressions
- Solves complex mathematical flow and momentum equations to determine water elevation, flow, and timing
- Based on a set Lake elevation when the storm starts
 - October 2020 water elevation for Bass Lakes modeling