

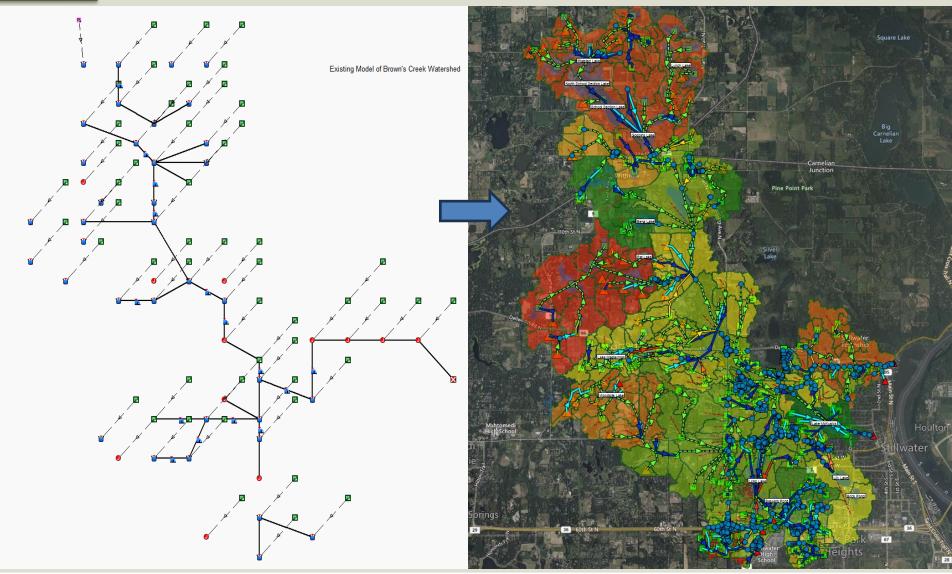
BCWD H&H Model Update

- 1. Model Update History
- 2. Project Scope/Update Overview
- 3. Model Update Benefits
- 4. Calibration and Validation Process & Results
- 5. BCWD Rainfall History and Future Climate Forecast
- 6. Floodplain Footprints
- 7. Recommendations & Next Steps

- 1999 H&H (46 subcatchments)
 - paper maps, 10' topo, limited culvert information
- 2004 H&H Update (345 subcatchments)
 - 2' topography & Minn. Landcover Classification System
 - Calibration of seventeen DNR waterbodies (BCWD "Lakes")
 - 100-Year Event = 5.9" -Basis for 2010 FEMA Flood Insurance Studies
 - Landlocked basin policy
- 2015 H&H Update (380 subcatchments)
 - 2011 LiDAR topography & GIS "trained" impervious areas
 - Calibration of DNR waterbodies & Brown's Creek
 - "Atlas 14" 100-Year Event = 7.2" with greater rainfall intensity
 - Average of +0.5-foot 100-year water level increase

Model

History



Model History Update Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

2025 H&H Update - Phased approach based on data availability:

- Updated climatology & precipitation data (NEXRAD Radar)
- Model hydraulics updated from 34 permits
- ❖ Topography Update (2022 LiDAR):
 - 621 subcatchment boundaries refined
 - 568 pond/depression/wetland storage
 - Overflow location/elevation, flow paths
 - More accurate accounting of flood storage in the landscape
- Updated land cover (2016 U of M 1-meter resolution)
- Calibration & validation for lakes and Brown's Creek
- Model design storm event simulations (2-year, 10-year, 100-year)
- 100-year flood mapping:
 - 7.2" Rainfall
 - 9.5" Rainfall Upper bound 90% confidence interval

Model Update History Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

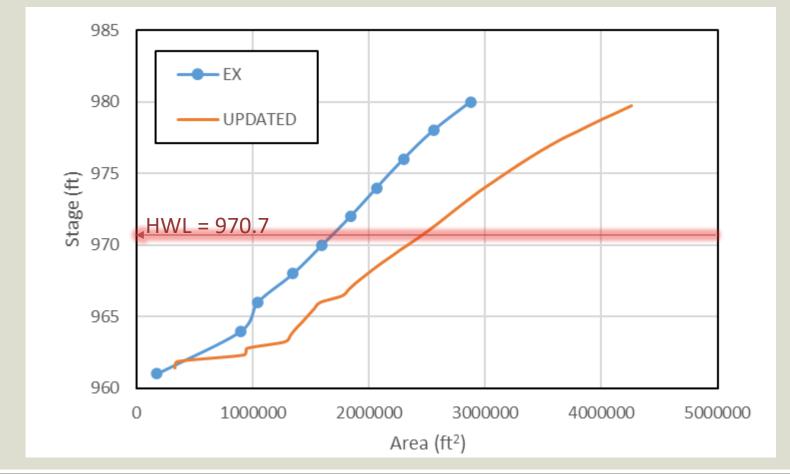
Recommendations

1. Refine Watershed Hydrologic Boundaries

ModelUpdateUpdateCalibrationRainfall & FloodFloodHistoryScopeBenefits& ValidationForecastAreas

2. Refined Subcatchments

- Accounts for natural depressional storage in the landscape
- Informs of areas that normally hold water back from lakes



2. More Accurate Basin Storage

- Woodpile Lake (Landlocked)
- Improves lake calibration for more accurate high water level predictions

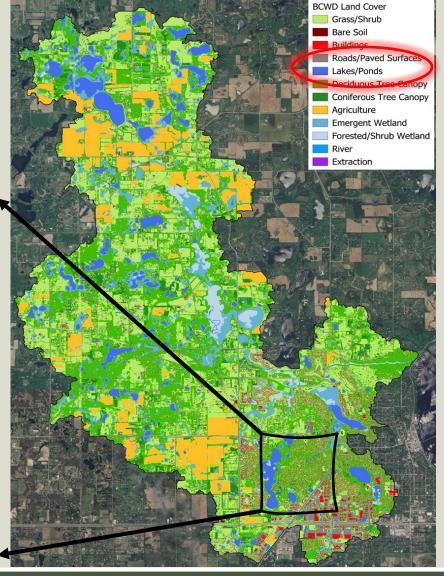
Model

Model Update History Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations


3. Utilization of Updated Land Cover Data

More accurate, imperviousness and hydrologic parameter estimates

4. Enhanced Model Resolution

Ability to assess proposed land cover changes within subcatchments

Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

17 Lakes – Volume (Elevation)

Lake Name	Node Name	DNR ID
Lake Name	Node Name	DINKID
Masterman	CBC-2a	82012600
South School Section	GSL-12a	82015100
Lynch Lake	GSL-14a	82004200
Goggins	GSL-20a	82007700
Plaisted	GSL-7a	82014800
Unnamed	KPL-1	82012800
Bass	KPL-2	82012300
Unnamed (Bass)	KPL-5	82012400
Kismet	KPL-6a	82033400
Pat	KPL-7	82012500
Long	LL-20	82002100
Jackson	LL-22	82030500
McKusick	McK-18	82002000
Unnamed (July Ave)	UBC-1	82031800
Benz	UBC-5f	82012000
Wood Pile	WKL-3	82013200
Kimbro	WKL-4	82034900

3 Locations of Brown's Creek - Flow

- 1. Manning Avenue
- 2. Stonebridge Trail
- 3. Highway 96 (WOMP)

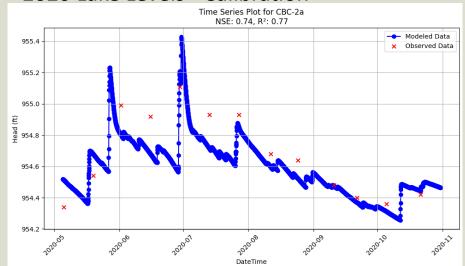
Time Period

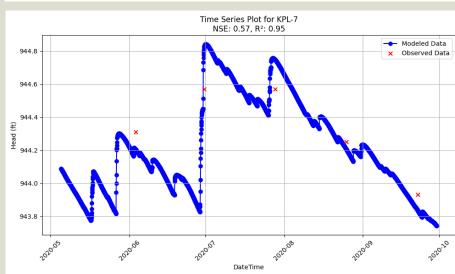
- 1. Calibration: 2020 data
- 2. Validation: 2022 data

Methodologies

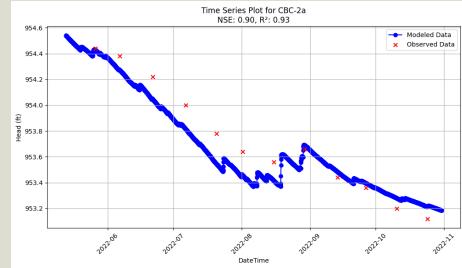
- Used a hotstart tool to simulate early spring precip. as a "warm up" period for realistic soil conditions/moisture
- Set initial lake levels, aligning with recorded data
- 3. Developed scripts to automate parts of the calibration and validation process, improving efficiency

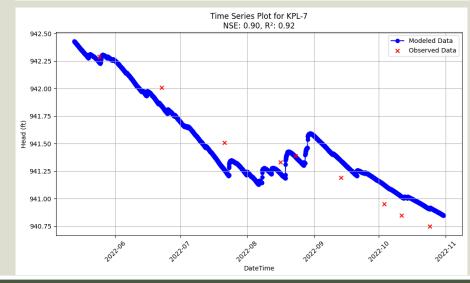
Model History


Update Scope Update Benefits Calibration & Validation

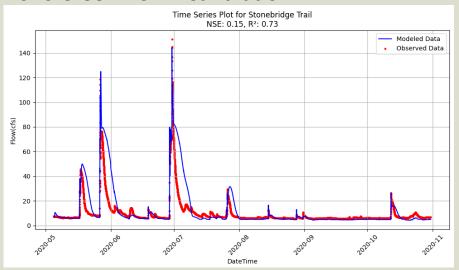

Rainfall & Forecast

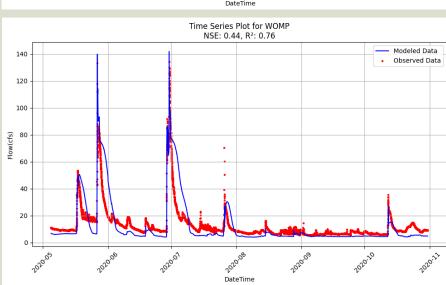
Flood Areas


Recommendations

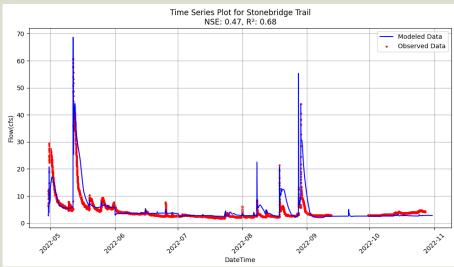

2020 Lake Levels - Calibration

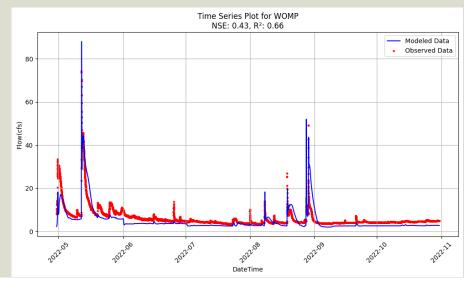
2022 Lake Levels - Validation


Model History Update Scope Update Benefits Calibration & Validation

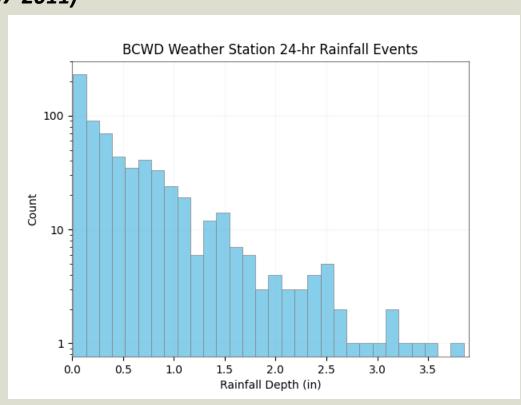

Rainfall & Forecast

Flood Areas


Recommendations


2020 Creek Flow - Calibration

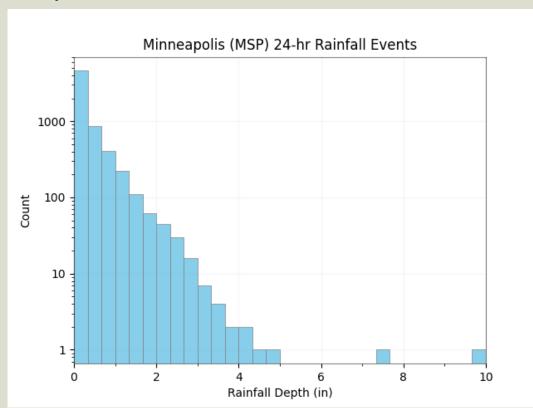
2022 Creek Flow - Validation



BCWD Weather Station (Record starting 07-2011)

	<u> </u>		
Rainfall Event	Event Depth (in.)	Event Count	
24-hr, 1-yr	2.44	12	
24-hr, 2-yr	2.81	4	
24-hr, 5-yr	3.49	3	
24-hr, 10-yr	4.17	0	
24-hr, 25-yr	5.23	0	
24-hr, 50-yr	6.16	0	
24-hr, 100-yr	7.23	0	

Two largest 24-hr storm events:



^{*3.85-}inch event occurred on 7/5/2015

^{*3.49-}inch event occurred on 6/28/2020

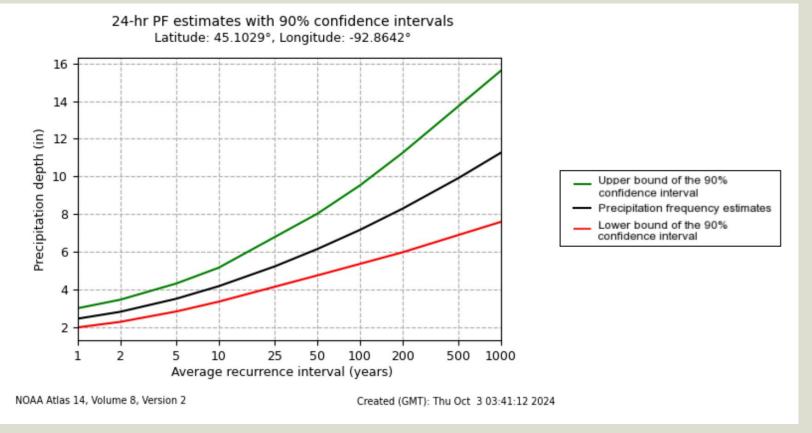
Minneapolis Station (Record starting 01-1947)

•	•	
Rainfall Event	Event Depth (in.)	Event Count
24-hr, 1-yr	2.44	39
24-hr, 2-yr	2.81	24
24-hr, 5-yr	3.49	6
24-hr, 10-yr	4.17	2
24-hr, 25-yr	5.23	0
24-hr, 50-yr	6.16	0
24-hr, 100-yr	7.23	1
24-hr, 200-yr	8.32	0
24-hr, 500-yr	9.98	1

Two largest 24-hr storm events:

^{*7.36-}inch event occurred on 8/30/1977

^{*10.0-}inch event occurred on 7/23/1987


Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

FUTURE CONDITIONS SCENARIO

- NOAA Atlas 14 upper bound of 90th percentile for the 100-year event (9.5" rainfall)
- Resulted in an average of + 0.5' water level increase over current conditions (MAX of 1.4' on Long Lake)

Methodology:

- 1. Exported 100-year water level results from model storage nodes into GIS
- 2. Integrated LiDAR data (topography) to generate floodplain maps

Limitations:

- 1. In urban areas, the entire storm sewer system is not modeled, only pond outlet pipes
- 2. Floodplain footprints are generated from the high water level of one pond in a subcatchment area, but not necessarily every depression in an urban area.
 - Therefore, depression areas surrounding the modeled ponds are assumed to be connected and reach the same water elevation - Example is backyard swales connecting to downstream ponds.
- Pipes, inlets, and outlet capacity limitations and clogging could worsen flood footprints

Top 10 flood footprint increases for 9.5" Upper Bound 100-Year Event:

Location	Area Increase	% Increase
Dellwood Rd Wetland	+11 acres	+22%
Bass Lake West	+7 acres	+9%
BOND Conservation Area	+7 acres	+4%
Stillwater Blvd & Orleans St	+6.8 acres	+54%
Long Lake	+6.5 acres	+5%
Manning & 115th St	+5.7 acres	+18%
July Avenue Pond	+5.4 acres	+15%
Goggins Lake	+5.2 acres	+4%
Plaisted Lake	+5.0 acres	+5%
Mendel Wetland	+41 acres	+130%

Dellwood Road Wetland

- +11 acres;
- +1.4 feet

Model Update History Scope Update Benefits

Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

- Bass Lake West
 - +7.0 acres;
 - +0.7 feet

Model Update History Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

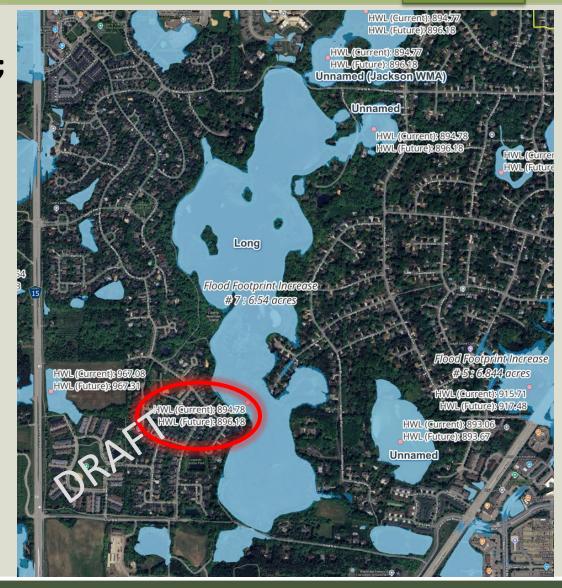
BCWD Conservation Area

- +7.0 acres;
- +0.9 feet

Model Update Update Calibration Rainfall & Flood
History Scope Benefits & Validation Forecast Areas

Stillwater Blvd & Orleans Street

- +6.8 acres;
- +1.8 feet



Model Update Update Calibration Rainfall & Flood
History Scope Benefits & Validation Forecast Areas

- Long Lake
 - +6.5 acres;
 - +1.4 feet

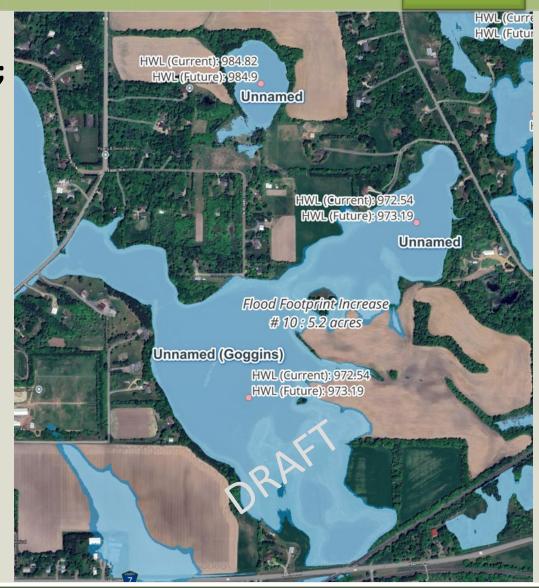
- Manning & 115th
 - +5.7 acres;
 - +1.2 feet

Update Calibration Benefits & Validation Rainfall & Forecast

Flood Areas

Recommendations

July Avenue Pond = +5.4 acres; +0.9 feet



Model Update Update Calibration Rainfall & Flood
History Scope Benefits & Validation Forecast Areas

- Goggins Lake
 - +5.2 acres;
 - +0.7 feet

Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

Plaisted Lake = +5.0 acres; +0.6 feet

Mendel Wetland

- +41 acres;
- +0.7 feet

Model Update Update Calibration Rainfall & Flood Recommendations
History Scope Benefits & Validation Forecast Areas

- 1. 62nd Street (x2)
- 2. Curve Crest Blvd
- 3. MN TH 36

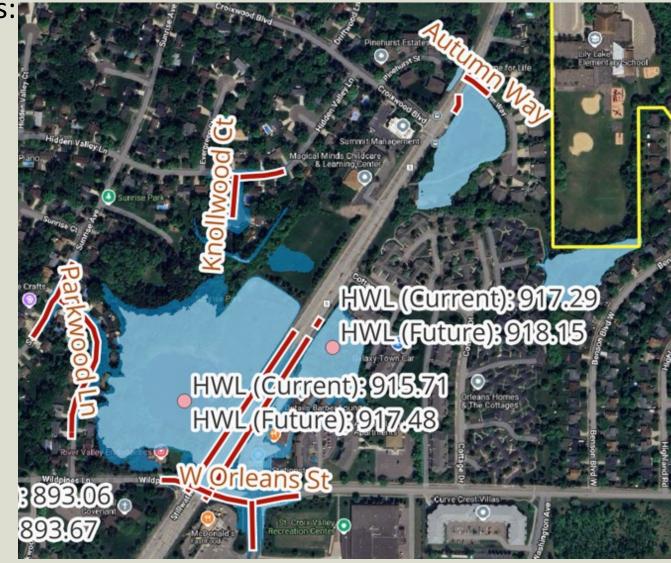
Model Update History Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

- 1. W. Orleans
- 2. Curve Crest Blvd
- 3. Stillwater Blvd
- 4. Washington Ave
- 5. 60th Street
- 6. MN TH 36


Model Update History Scope Update Benefits Calibration & Validation

Rainfall & Forecast

Flood Areas

Recommendations

- 1. Parkwood Ln
- 2. W Orleans St
- 3. Stillwater Blvd
- 4. Knollwood Ct
- 5. Autumn Way

Model Update Update Calibration Rainfall & Flood
History Scope Benefits & Validation Forecast Areas

- Urban Flooded Areas:
 - 1. Gilbert Ct
 - 2. Lydia Cir
 - 3. Benson Blvd
 - 4. Surry Ln
 - 5. Park Rd

Model Update Update Calibration Rainfall & Flood
History Scope Benefits & Validation Forecast Areas

- 1. 58th St N
- 2. 60th St N
- 3. Krueger Ln
- 4. Norell Ave N

- 1. 56th Street N
- 2. Memorial Ave
- 3. Stillwater Blvd

Further GIS Analysis:

1. Incorporate all storm sewer information to better define flooding footprints in key urban locations

Consider 2D modeling for urban areas (e.g., Marketplace) to:

- 1. Better understand flood dynamics
- 2. Assess sewer system performance and pipe capacity limitations
- 3. Demonstrate overland flow patterns, flooding duration, and roadway overtopping depths

Flood Vulnerability Assessment – use the updated model to:

- Critical Event Analysis
- Evaluate Social, Environmental, and Infrastructural impacts
- Share results with member communities
- Flood Reduction Evaluation
- Review opportunities with member communities and local partners

Thank You

